Multifunctional Monitoring of Polymer/Clay Compounding Using Dielectric, Optical and Fluorescence Measurements

Anthony J. Bur, Yu-Hsin Lee, Steven C. Roth and Paul R. Start NIST, Polymers Division

and

Paul H. Maupin
Office of Basic Energy Science, US Dept.of Energy

Outline

- **✓ The NIST Dielectric Slit Die**
- **✓ Monitoring Nylon/Clay Nanocomposites Compounding**
 - Dielectric
 - Optical transmission
 - Fluorescence

Outline

- **✓ The NIST Dielectric Slit Die**
- **✓ Monitoring Nylon/Clay Nanocomposites Compounding**
 - Dielectric
 - Optical transmission
 - Fluorescence
- **✓ Model Development: Extent of Exfoliation**

Outstanding Question: What is an exfoliated clay nanocomposite?

Nylon 6/30B clay

Exfoliation is the Goal

Enhanced resin-filler interface surface area yields:

- Improved materials properties of composites with less filler material
- Improved mechanical properties
 - modulus, strength, toughness
 - applications: automotive, packaging
- Improved barrier resin behavior
- Improved fire retardation

Exfoliation is the Goal

Enhanced resin-filler interface surface area yields:

- Improved materials properties of composites with less filler material
- Improved mechanical properties
 - modulus, strength, toughness
 - applications: automotive, packaging
- Improved barrier resin behavior
- Improved fire retardation

In order to control exfoliation, you must first measure it.

The NIST Dielectric Slit Die

Instrument Concept:

A Slit Platform for Mounting Multiple Sensors

The NIST Dielectric Slit Die

Front View

Advantage of the slit configuration:

- Constant geometry sample chamber can be interrogated by multiple of sensors
- Has configuration of a slit die rheometer.

Interdigitating Electrodes

Side View

The NIST Dielectric Slit Die

Experimental Setup for Extrusion

Compounding Nylon/Clay Composites

Materials:

- nylon 11 and Nylon 6
- montmorillonite clays
 - natural Na+ clay (aggregate composite)
 - three organo modified clays
 15A, 20A, 30B (partially exfoliated)

Compounding Nylon/Clay Composites: Dielectric Monitoring

nylon 11 at 195 °C

Data are fit with dispersion function:

$$\varepsilon^* = -\frac{i\sigma}{\omega \varepsilon_o} + \varepsilon_{\infty} + \sum_{j} \frac{\left(\varepsilon_o - \varepsilon_{\infty}\right)_{j}}{\left[1 + \left(i\omega\tau_{j}\right)^{1 - \alpha_{j}}\right]}$$

DC conductivity

Cole-Cole dielectric relaxation

Electrical impedance model:

Electrical impedance model:

$$\varepsilon^* = -\frac{i\sigma}{\omega \varepsilon_o} + \varepsilon_{\infty} + \sum_{j} \frac{\left(\varepsilon_o - \varepsilon_{\infty}\right)_{j}}{\left[1 + \left(i\omega\tau_{j}\right)^{1-\alpha_{j}}\right]}$$

DC conductivity

Cole-Cole dielectric relaxation

$$\varepsilon^* = -\frac{i\sigma}{\omega \varepsilon_o} + \varepsilon_{\infty} + \sum_{j} \frac{\left(\varepsilon_o - \varepsilon_{\infty}\right)_{j}}{\left[1 + \left(i\omega\tau_{j}\right)^{l - \alpha_{j}}\right]}$$

DC conductivity

Cole-Cole dielectric relaxation

Analysis protocol:

- Examine raw data for relaxation phenomena noting magnitude and position on frequency scale
- Carry out non-linear regression curve fitting to retrieve relaxation parameters

Maxwell Wagner Relaxation

nylon 11 at 195 °C

	Log f _{MW}
Nylon 11 at 198 °C	
Nylon 11/Na+	0.74
Nylon 11/30B	0.62
Nylon 11/20A	0.24
Nylon 11/15A	0.16
Nylon 6 at 242 °C	
Nylon 6/15A	1.98
Nylon 6/30B	1.10

Maxwell Wagner Relaxation

Reflects RC Time Constant for Charging Polymer/Clay Interface

$$RC = \tau_{MW} = (2\pi f_{MW})^{-1}$$

R = resistance of nylon (constant)

C = capacitance of clay particle (increases with exfoliation)

 $\tau_{MW} \ \ large \ or \ f_{MW} \ small$ $for \ exfoliated \ composite$

φ = volume fraction of aggregate

Compounding Nylon/Clay Composites Extent of Exfoliation

nylon 11/clay nanocomposites

Compounding Nylon/Clay Composites Developing an Extent of Exfoliation Scale

Calculate time constant for charging capacitor

Compounding Nylon/Clay Composites Developing an Extent of Exfoliation Scale

 $RC = \tau_{MW}$ or $\rho \epsilon = \tau_{MW}$ time constant:

drift velocity: bv = qE where $b = 6\pi\eta a$ (Stokes)

Ohm's law: $nqv \rho = E$

Extent of Exfoliation:
$$\frac{n_o C}{nC_o} = \frac{n_o q^2 \tau_{MW}}{6\pi\epsilon_o \eta a}$$

Compounding Nylon/Clay Composites Developing an Extent of Exfoliation Scale

Extent of Exfoliation:
$$\frac{n_o C}{nC_o} = \frac{n_o q^2 \tau_{MW}}{6\pi\epsilon_o \eta a}$$

η is molecular viscosity – obtain from diffusion constant or dielectric relaxation time

From dielectric measurements:

$$\tau_{r} = \frac{8\pi\eta a^{3}}{2kT}$$

An Extent of Exfoliation Scale

Use τ_r from γ relaxation of nylon:

Compounding Nylon/Clay Composites: Fluorescence Monitoring

nile blue replaces 5% of surfactant by ion exchange

Compounding Nylon 11/15A nile blue dye

TEM from extrusion

batch mixer 601 s Intensity wavelength nm

Compounding Nylon 11/15A nile blue

Summary

- The NIST Dielectric Slit Die
- Extent of exfoliation in nylon/clay nanocomposites from
 - Dielectric
 - Optical transmission
 - Fluorescence
- Measuring Extent of Exfoliation is prerequisite for controlling exfoliation